SOLVED PAPER SSC (10+2) LEVEL DATA ENTRY OPERATOR & LDC EXAM

First Sitting

Held on : 11.12.2011

PART III QUANTITATIVE APTITUDE

- 101. From each of the two given unequal numbers, half the smaller number is subtracted. Then, of the resulting numbers, the larger one is five times than the smaller one. Then the ratio of the larger to smaller one is
 - (a) 2:1 (b) 3:2 (c) 3:1 (d) 1:4
- **102.** The largest number among $\sqrt{2}$, $\sqrt[3]{3}$, $\sqrt[4]{4}$ is
 - (a) $\sqrt{2}$ (b) $\sqrt[3]{3}$
 - (c) $\sqrt[4]{4}$ (d) All are equal
- 103. A got married 8 years ago. A's 1 persent age
 - is $1\frac{1}{4}$ times his age at the time of marriage.
 - A's son's age is $\frac{1}{10}$ times his present age. His son's age in years, is (a) 2 (b) 3 (c) 4 (d) 5

- 104. When an integer K is divided by 3, the remainder is 1, and when K + 1 is divided by 5, the remainder is 0. Of the following, a possible value of K is

 (a) 62
 (b) 63
 (c) 64
 (d) 65
- 105. A farmer has 945 cows and 2475 sheep. He farms then into flocks, keeping cows and sheep separate and having the same number of animals in each flock. If these flocks are as large as possible, then the maximum number of animals in each flock and total num-ber of flocks required for the purpose are respectively
 - (a) 15 and 228
 - (b) 9 and 380
 - (c) 45 and 76 (d) 46 and 75
- 106. The number of sides in two regular polygons are in the ratio 5:4 and the difference between each interior angle of the polygons is 6° . Then the number of sides are
 - (a) 15, 12 (b) 5A (c) 10, 8 (d) 20, 16

www.sscportal.in

Solved	Papers
--------	---------------

- 107. If the length of each side of a regular tetrahedron is 12 cm, then the volume of the tetra-hedron is
 - (a) 144 V² cu. cm. (b) 72 f cu. cm.
 - (c) 8, cu. cm. (d) 12_{J} cu. cm.
- 108. If the radii of the circular ends of a truncated conical bucket which is 45cm high be 28 cm and 7 cm, then the capacity of the bucket in

cubic centimetre is uses $\left(use \ p = \frac{22}{7}\right)$

(a)	48510	(b) 45810
(c)	48150	(d) 48051

- 109. A cone, a hemisphere and a cylinder stand on equal base and have the same height. Their volumes are in the ratio
 - (a) 1: 3: 2 (b) 2: 3: 1 (c) 1: 2: 3 (d) 3: 1: 2
- 110. A metal wire when bent in the form of a square encloses an area 484 cm². If the same wire is bent in the form of a circle, then

(taking
$$\mathbf{x} = p = \frac{22}{7}$$
) its area is
a) 308 cm² (b) 506 cm²
c) 600 cm² (d) 616 cm²

- 111. Sides of a parallelogram are in the ratio 5 : 4. Its area is 1000 sq. units. Altitude on the greater side is 20 units. Altitude on the smaller side is
 - (a) 30 units (b) 25 units (c) 10 units (d) 15 units
- 112. A circus tent is cylindrical up to a height of 3 m and conical above it. If its diameter is 105m and the slant height of the conical part is 63 m, then the total area of the canvas required to make the tent is

$$\begin{pmatrix} \text{take } p = \frac{22}{7} \\ 11385 \text{ m}^2 \\ 9900 \text{ m}^2 \\ \textbf{(d)} 990 \text{ m}^2 \end{cases}$$

(a)

(c)

- 113. B and C can complete a piece of work in 12 days, C and A can do it in 8 days. All the three can do it in 6 days. A and B together can complete it in
 - (a) 4 days (b) 6 days (c) 8 days (d) 10 days
- 114. A can do a work in 9 days, if B is 50% more efficient than A, then in how many days can B do the same work?
 (a) 13.5
 (b) 4.5
 - (a) 13.5 (b) 4 (c) 6 (d) 3
- 115. The successive discounts of 10% and 20% are equivalent to a single discount of
 (a) 30%
 (b) 28%
 - (c) 25% (d) 27%
- 116. A dealer marks his goods at 40% above the cost price and allows a discount of 20% on the marked price. The dealer has a

 (a) loss of 20%
 (b) gain of 25%
 - (c) loss of 12% (d) gain of 12%
- **117.** If 120% of a is equal to 80% of b, then $\frac{b+a}{b-a}$

is equal to (a) 5 (b) 6 (c) 7 (d) 8

- 118. The ratio of spirit and water in two mixturers of 20 litre and 36 litre is 3 : 7 apd 7 : 5 respectively. Both the mixtures are mixed together. Now the ratio of the spirit and water in the new mixture is

 (a) 25: 29
 (b) 9: 10
 (c) 27: 29
 (d) 27: 31
- 119. The average of *n* numbers x_1, \ldots, x_2 is \overline{x} . Then

the value of
$$\sum_{t=1}^{n} (x_t - \overline{x})$$
 is equal to i=1
(a) **n** (b) 0

(c)
$$n\overline{x}$$
 (d) \overline{x}

120. The average of six numbers is 32. If each of the first three numbers is increased by 2 and

www.sscportal.in

Solved Papers

each of the remaining three numbers is decreased by 4, then the new average is (a) 35 (b) 34 (c) 31 (d) 30 (c) 1 (c) $x^2 + 2 = 2x$, then the value of $x^4 - x^3 + x^2 + 2$ is (a) 0 (b) 1 (c) $x^4 - x^3 + x^2 + 2$ (c) $x^4 - x^3 + x^2 + 2$

121. The cost price : selling price of an article is a : b. If b is 200% of a then the percentage of profit on cost price is
(a) 75%
(b) 125%

• •		()	
(c)	100%	(d)	200%

- 122. A person sells 400 mangoes at the cost price of 320 mangoes. His percentage of loss is
 (a) 10
 (b) 15
 (c) 20
 (d) 25
- 123. A person ordered 4 shirts of brand A and some shirts of brand B. The price of one shirt of brand A was twice that of brand B. When the order was executed, it was found that the numbers of the two brands has been interchanged. This increased the bill by 40%. The ratio of the number of brand A shirts to that of brand B shirts in the original order was

124. A litre of pure alcohol is added to 6 litres of 30% alcohol solution. The percentage of water in the solution is
(a) 50%

(a)	JU /0	(U)	UJ /0	
(c)	60%	(d)	40%	

125. A man can row 30 km down-stream and return in a total of 8 hours. If the speed of the boat in still water is four times the speed of the current, then the of the speed current is

(a)	1 km/hour	(b)	2 km/hour
(c)	4 km/hour	(d)	3 km/hour

- 126. The difference between the simple and compound interest on a certain sum of monour for 2 years at 4% per annumic Bs 1.
 - money for 2 years at 4% per annum is Rs.1. Find the sum. (a) Rs .630 (b) Rs. 620

(c) **Rs**.

000	(D)	103.	0.00
625	(d)	Rs.	635

- is (a) 0 (b) 1 (c) -l (d) $\sqrt{2}$ 128. If $2^x = 3^y = 6^{-z}$ then $\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)$ is equal to (b) 1 (a) 0 (c) $\frac{3}{2}$ (d) $-\frac{1}{2}$ **129.** If $\frac{1}{x+y} = \frac{1}{x} + \frac{1}{y}$ ($x \neq 0, y \neq 0, x \neq y$) then, the value of $x^3 - y^3$ is (a) 0 (b) 1 (c) -l (d) 2 130. For real a, b, c if $a^2 + b^2 + c^2 - ab + bc + ca$. then
 - value of $\frac{a+c}{b}$ is (a) 1 (b) 2 (c) 3 (d) 0

131. If x = a(b-c), y = b(c-a) and z = c(a-b), then

$$\left(\frac{x}{a}\right)^3 + \left(\frac{y}{b}\right)^3 + \left(\frac{z}{c}\right)^3 =$$

(a)	$\frac{xyz}{3abc}$	(b) 3 <i>xyzabc</i>
(c)	$\frac{3xyz}{abc}$	(d) $\frac{xyz}{abc}$

132. In a quadrilateral *ABCD*, with unequal sides if the diagonals *AC* and *BD* intersect at right angles, then (a) $AB^2 + BC^2 - CD^2 + DA^2$

(a)
$$AB^2 + BC^2 = CD^2 + DA^2$$

(b) $AB^2 + CD^2 = BC^2 + DA^2$

(b)
$$AB^2 + CD^2 = BC^2 + DA^2$$

(c)
$$AD^2 + AD^2 = DC^2 + CD^2$$

(d) $AD^2 + DC^2 = 9(CD^2 + DA^2)$

- (d) $AB^2 + BC^2 = 2(CD^2 + DA^2)$
- 133. The tangents are drawn at the extremities of a diameter *AB* of a circle with centre P. If a

www.sscportal.in

			Solved Papers
	tangent to the circle at the other two tangen measure of the $\angle QPR$ (a) 45°	t the point C intersects ts at g and R, then the <i>Lis</i> (b) 60°	(a) $\frac{1}{\sqrt{3}}$ (b) $\sqrt{3}$ (c) 1 (d) undefined
134.	(c) 90° Let O be the in-centre D be a point on the si that $OD \perp BC$. If $\angle BO$ (a) 75° (c) 150°	(d) 180° e of a triangle <i>ABC</i> and ide <i>BC</i> of $\triangle ABC$, such $DD = 15^\circ$, then $\angle ABC =$ (b) 45° (d) 90°	140. Two poles of equal heights are standing opposite to each other on either side of a road which is 100m wide. From a point between them on road, angles of elevation of their tops are 30° and 60°. The height of each pole in metre, is
135.	AB is a chord to a c tangent to the cir cle a $\angle BAC = 45^\circ$, C being then $\angle ABC$ is equal to (a) 40° (c) 60°	circle and PAT is the at A . If $\angle BAT = 75^{\circ}$ and g a point on the circle, (b) 45° (d) 70°	(a) $25\sqrt{3}$ (b) $20\sqrt{3}$ (c) $28\sqrt{3}$ (d) $30\sqrt{3}$ 141. If $\sec^2\theta + \tan^2\theta = 7$, then the value of θ when $0^\circ \le \theta \le 90^\circ$ is (a) 60° (b) 30°
136.	<i>D</i> is any point on side Yare the midpints of respectively, then the (a) 1:2 (c) 2:1	AC of $\triangle ABC$. If P, Q, X, f AB, BC, AD and DC e ratio of PX and QY is (b) 1:1 (d) 2:3	(c) 0° (d) 90° Directions (142-146): The bar diagram given below shows the productions (in the unit of thousand pieces) of three types of biscuits by a company in the five consecutive years. Study the diagram and answer the following questions 142 to 146
137.	If $2\cos\theta - \sin\theta = \frac{1}{\sqrt{2}}$ of $2\sin\theta + \cos\theta$ is	$(0^\circ < \theta < 90^\circ)$ the value	$\begin{bmatrix} 50 \\ -45 \\ 40 \\ -40 \\ -40 \\ \end{bmatrix}$ Glucose biscuit Cream Cracker biscuit Salted biscuit
138.	(a) $\overline{\sqrt{2}}$ (c) $\frac{3}{\sqrt{2}}$ If $\frac{\sin\theta + \cos\theta}{\sin\theta - \cos\theta} = 3$, the	(b) $\sqrt{2}$ (d) $\frac{\sqrt{2}}{3}$ en the value of $\sin^4\theta$ –	35- 30- 25- 20- 15- 10- 5- 1993 1994 1995 1996 1997
	cos ⁴ θ is (a) $\frac{1}{5}$ (c) $\frac{3}{5}$	(b) $\frac{2}{5}$ (d) $\frac{4}{5}$	 142. The percentage drop in the number of glucose biscuits manufactured from 1994 to 1995 is (a) 10 (b) 15 (c) 25 (d) 20 143. The difference (in the unit of thousand
139.	The value of tan l °. tan87°. tan88°. tan89°	tang' tan3°. tan4° ° is	pieces) between the total number of cream cracker biscuits manufactured in the years

Downloaded Form : http://sscportal.in

www.sscportal.in

Solved Papers

	1993, 1995 and 1997 and the total number of the biscuits of same type in the years 1994 and 1996 is			. The production of all the three types of biscuits was maximum in the year (a) 1995 (b) 1994			
	(a) 15	(b) 25		(c) 1	1996	(d)	1993
	(c) 30	(d) 20	146.	The	ratio of produ	ction o	of glucose biscuits
144.	Total production of	all the three types of	and total production of biscuits in that yes				iscuits in that year
	biscuits was the least in the year			was	maximum in		· ·
	(a) 1993	(b) 1997		(a) 1	994	(b)	1993
	(c) 1996	(d) 1995		(c) 1	996	(d)	1997

Directions (147-150 : Study the following table which shows the number of studetns appeared and passed in different streams in a University and answer the questions given below it

	Engi	ineering	Medi	cal	Manag	gement	Com	nerce	
Year	App eared	Pass	App eared	Pass	App eared	Pass	App eared	Pass	
2001	324	289	469	246	96	69	1467	1310	_
2002	356	312	430	364	74	62	1246	1129	
2003	284	212	384	326	124	102	1387	1176	
2004	310	246	395	298	106	92	1180	1074	
2006	380	286	466	405	78	63	1375	1207	

- 147. Approximately what per cent of students appearing in medical, passed in 2003?
 (a) 75%
 (b) 85%
 (c) 78%
 (d) 88%
- 148. Approximately what per cent of total students appearing in 2004, appeared in commerce stream?(a) 55 29((b) 64 49(

(a)	55.3%	(D)	64.4%
(c)	52.5%	(d)	59.3 %

- 149. The number of students appearing in all streams was minimum in the year
 - (a) 2002
 - (b) 2003
 - (c) 2004
 - (d) 2006
- 150. The number of students passing in all streams was maxi-mum in the year.
 (a) 2001 (b) 2005
 (c) 2006 (d) 2004

								. ,	
				AN	SWERS				
101. (c)) 102. (b)	103. (c)	104. (c)	105. (c)	106. (a)	107. (a)	108. (a)	109. (c)	110. (d)
111. (b)) 112. (a)	113. (c)	114. (c)	115. (b)	116. (d)	117. (a)	118. (c)	119. (b)	120. (c)
121. (c)) 122. (c)	123. (b)	124. (c)	125. (b)	126. (c)	127. (a)	128. (a)	129. (a)	130. (b)
131. (c)	132. (b)	133. (c)	134. (c)	135. (c)	136. (b)	137. (c)	138. (c)	139. (c)	140. (a)
141. (a)) 142. (c)	143. (b)	144. (a)	145. (a)	146. (b)	147. (b)	148. (d)	149. (c)	150. (b)
141. (a	142. (6)	143. (D)	144. (a)	145. (a)	140. (D)	147. (D)	140. (u)	149. (6)	150. (b)

www.sscportal.in

