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WAVES

15.1 INTRODUCTION

In the previous Chapter, we studied the motion of objects
oscillating in isolation. What happens in a system, which is
a collection of such objects ? A material medium provides
such an example. Here, elastic forces bind the constituents
to each other and, therefore, the motion of one affects that of
the other. If you drop a little pebble in a pond of still water,
the water surface gets disturbed. The disturbance does not
remain confined to one place, but propagates outward along
a circle. If you continue dropping pebbles in the pond, you
see circles rapidly moving outward from the point where the
water surface is disturbed. It gives a feeling as if the water is
moving outward from the point of disturbance. If you put
some cork pieces on the disturbed surface, it is seen that
the cork pieces move up and down but do not move away
from the centre of disturbance. This shows that the water
mass does not flow outward with the circles, but rather a
moving disturbance is created. Similarly, when we speak,
the sound moves outward from us, without any flow of air
from one part of the medium to another. The disturbances
produced in air are much less obvious and only our ears or
a microphone can detect them. These patterns, which move
without the actual physical transfer or flow of matter as a
whole, are called waves. In this Chapter, we will study such
waves.

In a wave, information and energy, in the form of signals,
propagate from one point to another but no material object
makes the journey. All our communications depend on the
transmission of signals through waves. When we make a
telephone call to a friend at a distant place, a sound wave
carries the message from our vocal cords to the telephone.
There, an electrical signal is generated which propagates
along the copper wire. If the distance is too large, the electrical
signal generated may be transformed into a light signal or
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electromagnetic waves and transmitted through
optical cables or the atmosphere, possibly by
way of a communication satellite. At the
receiving end, the electrical or light signal or
the electromagnetic waves are transformed back
into sound waves travelling from the telephone
to the ear.

Not all waves require a medium for their
propagation. We know that light waves can
travel through vacuum. The light emitted by
stars, which are hundreds of light years away,
reaches us through inter-stellar space, which
is practically a vacuum.

The waves we come across are mainly of three
types: (a) mechanical waves, (b) electromagnetic
waves and (c) matter waves. Mechanical waves
are most familiar because we encounter them
constantly; common examples include water
waves, sound waves, seismic waves, etc. All
these waves have certain central features : They
are governed by Newton’s laws, and can exist
only within a material medium, such as water,
air, and rock. The common examples of
electromagnetic waves are visible and ultra-
violet light, radio waves, microwaves, x-rays etc.
All electromagnetic waves travel through
vacuum at the same speed c, given by

c=299, 792,458 m s (speed of light) (15.1)

Unlike the mechanicalwaves,the electro-
magnetic waves do not require any medium for
their propagation. You would learn more about
these waves later.

Matter waves are associated with moving
electrons, protons, neutrons and other
fundamental particles, and even atoms and
molecules. Because we commonly think of these
as constituting matter, such waves are
called matter waves. They arise in quantum
mechanical description of nature that you will
learn in your later studies. Though conceptually
more abstract than mechanical or electro-
magnetic waves, they have already found
applications in several devices basic to modern
technology; matter waves associated with
electrons are employed in electron microscopes.

In this chapter we will study mechanical
waves, which require a material medium for
their propagation.

The aesthetic influence of waves on art and
literature is seen from very early times; yet the
first scientific analysis of wave motion dates back

to the seventeenth century. Some of the famous
scientists associated with the physics of wave
motion are Christiaan Huygens (1629-1695),
Robert Hooke and Isaac Newton. The
understanding of physics of waves followed the
physics of oscillations of masses tied to springs
and physics of the simple pendulum. Waves in
elastic media are intimately connected with
harmonic oscillations. (Stretched strings, coiled
springs, air, etc., are examples of elastic media.)
We shall illustrate this connection through
simple examples.

Consider a collection of springs connected to
one another as shown in Fig. 15.1. If the spring
at one end is pulled suddenly and released, the
disturbance travels to the other end. What has
happened ? The first spring is disturbed from
its equilibrium length. Since the second spring
is connected to the first, it is also stretched or
compressed, and so on. The disturbance moves

M
A

Fig. 15.1 A collection of springs connected to each
other. The end A is pulled suddenly
generating a disturbance, which then
propagates to the other end.

from one end to the other; but each spring only
executes small oscillations about its equilibrium
position. As a practical example of this situation,
consider a stationary train at a railway station.
Different bogies of the train are coupled to each
other through a spring coupling. When an
engine is attached at one end, it gives a push to
the bogie next to it; this push is transmitted from
one bogie to another without the entire train
being bodily displaced.

Now let us consider the propagation of sound
waves in air. As the wave passes through air, it
compresses or expands a small region of air. This
causes a change in the density of that region,
say 0p, this change induces a change in pressure,
dp, in that region. Pressure is force per unit area,
so there is a restoring force proportional to
the disturbance, just like in a spring. In this
case, the quantity similar to extension or
compression of the spring is the change in
density. If a region is compressed, the molecules
in that region are packed together, and they tend
to move out to the adjoining region, thereby
increasing the density or creating compression
in the adjoining region. Consequently, the air
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in the first region undergoes rarefaction. If a
region is comparatively rarefied the surrounding
air will rush in making the rarefaction move to
the adjoining region. Thus, the compression or
rarefaction moves from one region to another,
making the propagation of a disturbance
possible in air.

In solids, similar arguments can be made. In
a crystalline solid, atoms or group of atoms are
arranged in a periodic lattice. In these, each
atom or group of atoms is in equilibrium, due to
forces from the surrounding atoms. Displacing
one atom, keeping the others fixed, leads to
restoring forces, exactly as in a spring. So we
can think of atoms in a lattice as end points,
with springs between pairs of them.

In the subsequent sections of this chapter
we are going to discuss various characteristic
properties of waves.

15.2 TRANSVERSE AND LONGITUDINAL
WAVES

Mechanical waves can be transverse or
longitudinal depending on the relationship
between the directions of disturbance or
displacement in the medium and that of the
propagation of wave. To differentiate between
them let us consider the response of a stretched
string fixed at one end. If you give a single up-
and-down jerk to the free end of this string, as
shown in Fig. 15.2, a wave in the form of a single
pulse travels along the string. We assume that
the string is very long as compared to the size of
the pulse, so that the pulse dissipates out by
the time it reaches the other end and, therefore,
its reflection from the other end may be ignored.
The formation and propagation of this pulse is
possible because the string is under tension.
When you pull your end of the string upwards it
begins to pull upwards on the adjacent section
of the string, because of the tension between
the two sections. As the adjacent section begins
to move upwards, it begins to pull the next
section upwards, and so on. In the meanwhile
you have pulled down your end of the string. As
each section moves upwards in turn, it begins
to be pulled back downwards by neighbouring
sections that are already on the way down. The
net result is that a distortion in the shape of
the string (the pulse) moves along the string with
a certain velocity v.

Fig. 15.2 A single pulse is sent along a stretched
string. A typical element of the string (such
as that marked with a dot) moves up and
then down as the pulse passes through.
The element’s motion is perpendicular to the
direction in which the wave travels.

If you move your end up and down in a
continuous manner, a continuous wave travels
along the string with a velocity v. However, if
the motion of your hand is a sinusoidal function
of time, at any given instant of time the wave
will have a sinusoidal shape as shown in
Fig. 15.3. The wave has the shape of a sine or
cosine curve.

The waves shown in Fig. 15.3 can be studied
in two ways. Oneway is to monitor the
waveforms as they move to the right, i.e. take a
‘snapshot’ of the string at a given instant of time.
Alternatively, we fix our attention to a particular
position on the string and monitor the motion
of an element at that point as it oscillates up
and down while a wave passes through it. We
would find that the displacement of every such
oscillating string element is transverse (i.e.
perpendicular) to the direction of travel of
the wave as indicated in Fig. 15.3. Such a wave
is said to be a transverse wave.

y _
Sinusoidal
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Fig. 15.3 A sinusoidal wave is sent along the string.
A typical element of the string moves up

and down continuously as the wave passes.
It is a transverse wave.
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Now, let us consider the production of waves
in a long air-filled pipe by the movement of a
piston as shown in Fig. 15.4. If you suddenly
move the piston to the right and then to the left,
you are sending a pulse of pressure along the
pipe. The motion of the piston to the right pushes

AN
Fig. 15.4 A sound wave is set up in an air filled pipe
by moving a piston back and forth. As the
oscillations of an element of air are parallel

to the direction in which the wave travels,
the wave is a longitudinal wave.

the elements of air next towards the right,
changing the air pressure there. The increased
pressure in this region then pushes on the
elements of air somewhat farther along the pipe.
Moving the piston to the left reduces the air
pressure next to it. This causes the elements of
air next to it move back to the left and then the
farther elements follow. Thus, the motion of the
air and the change in air pressure travel towards
the right along the pipe as a pulse.

If you push and pull on the piston in a simple
harmonic manner, a sinusoidal wave travels
along the pipe. It may be noted that the motion
of the elements of air is parallel to the direction
of propagation of the wave. This motion is said
to be longitudinal and the wave produced is,
therefore, called a longitudinal wave. The
sound waves produced in air are such pressure
waves and are therefore of longitudinal
character.

In short, in transverse waves, the
constituents of the medium oscillate
perpendicular to the direction of wave
propagation and in longitudinal waves they
oscillate along the direction of wave
propagation.

A wave, transverse or longitudinal, is said to
be travelling or progressive if it travels from
one point of the medium to another. A
progressive wave is to be distinguished from a
standing or stationary wave (see Section 15.7).
In Fig. 15.3 transverse waves travel from one
end of the string to the other end while the

longitudinal waves in Fig. 15.4 travel from one
end of the pipe to its other end. We note again
that in both the cases, it is the wave or the
disturbance that moves from end to end, not
the material through which the waves
propagate.

In transverse waves, the particle motion is
normal to the direction of propagation of the
wave. Therefore, as the wave propagates, each
element of the medium undergoes a shearing
strain. Transverse waves can, therefore, be
propagated only in those media which can
sustain shearing stress, such as solids and
strings, and not in fluids. Fluids as well as solids
can sustain compressive strain; therefore,
longitudinal waves can propagate in all elastic
media. For example, in medium like a steel bar,
both transverse and longitudinal waves can
propagate while air can sustain only
longitudinal waves. The waves on the surface
of water are of two kinds: capillary waves and
gravity waves. The former are ripples of fairly
short wavelength—no more than a few
centimetres—and the restoring force that
produces them is the surface tension of water.
Gravity waves have wavelengths typically
ranging from several metres to several hundred
metres. The restoring force that produces these
waves is the pull of gravity, which tends to keep
the water surface at its lowest level. The
oscillations of the particles in these waves are
not confined to the surface only, but extend with
diminishing amplitude to the very bottom. The
particle motion in the water waves involves a
complicated motion; they not only move up and
down but also back and forth. The waves in an
ocean are a combination of both longitudinal
and transverse waves.

It is found that generally transverse and
longitudinal waves travel with different speeds in
the same medium.

b Example 15.1 Given below are some

examples of wave motion. State in each case

if the wave motion is transverse, longitudinal
or a combination of both:

(@) Motion of a kink in a longitudinal spring
produced by displacing one end of the
spring sideways.

(b) Waves produced in a cylinder
containing a liquid by moving its piston
back and forth.

(c) Waves produced by a motorboat sailing
in water.

(d) Ultrasonic waves in air produced by a
vibrating quartz crystal.
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Answer
(a) Transverse and longitudinal
(b) Longitudinal
(¢) Transverse and longitudinal

(d) Longitudinal <
15.3 DISPLACEMENT RELATION IN A
PROGRESSIVE WAVE

To describe the propagation of a wave in a
medium (and the motion of any constituent of
the medium), we need a function that completely
gives the shape of the wave at every instant of
time. For example, to completely describe the
wave on a string (and the motion of any element
along its length) we need a relation which
describes the displacement of an element at a
particular position as a function of time and also
describes the state of vibration of various
elements of the string along its length at a given
instant of time. For a sinusoidal wave, as shown
in Fig. 15.3, this function should be periodic in
space as well as in time. Let y (x, t) denote the
transverse displacement of the element at
position x at time t. As the wave sweeps through
succeeding elements of the string, the elements
oscillate parallel to the y-axis. At any time ¢, the
displacement y of the element located at position
x is given by

ylx t)=asin (kkx—at + ¢) (15.2)

One can as well choose a cosine function or
a linear combination of sine and cosine functions
such as,

Yy (x, ) =Asin (kx—at) + Bcos (kx—at),
then in Eq. (15.2),

a=vA2 +Bzand¢ =tanl(§)

The function represented in Eq. (15.2) is
periodic in position coordinate x and time t. It
represents a transverse wave moving along the
x-axis. At any time ¢, it gives the displacement
of the elements of the string as a function of
their position. It can tell us the shape of the
wave at any given time and show how the wave
progresses. Functions, such as that given in Eq.
(15.2), represent a progressive wave travelling
along the positive direction of the x-axis. On the
other hand a function,

ylx, t) = asin (kx + at + ¢), (15.4)

represents a wave travelling in the negative
direction of x-axis (see Section 15.4). The set of

(15.3)

four parameters a, ¢ k, and win Eq. (15.2)
completely describe a harmonic wave. The
names of these parameters are displayed in Fig.
15.5 and are defined later.

Displacement Am'p_!iude Phase
yl, ) = a sin (lkx - ot + ¢)

T 1 T

Angular Angular Initial
Wave Frequency Phase
Number Angle

Fig. 15.5 The names of the quantities in Eq. (15.2)
for a progressive wave.

To understand the definition of the quantities
in Eq. (15.2), let us consider the graphs shown
in Fig. 15.6. These graphs represent plots of
Eq. (15.2) for five different values of time t as
the wave travels in positive direction of x-axis.
A point of maximum positive displacement in a
wave, shown by the arrow, is called crest, and a
point of maximum negative displacement is
called trough. The progress of the wave is
indicated by the progress of the short arrow
pointing to a crest of the wave towards the right.
As we move from one plot to another, the short
arrow moves to the right with the wave shape,

Fig. 15.6 Plots of Eq. (15.2) for a wave travelling in
the positive direction of an x-axis at five
different values of time t.
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but the string moves only parallel to y-axis. It
can be seen that as we go from plot (a) to (e), a
particular element of the string has undergone
one complete cycle of changes or completed one
full oscillation. During this course of time the
short arrow head or the wave has moved by a
characteristic distance along the x-axis.

In the context of the above five plots, we will
now define various quantities in Eq. (15.2) and
shown in Fig.15.5.

15.3.1 Amplitude and Phase

The amplitude a of a wave such as that in
Figs.15.5 and 15.6 is the magnitude of the
maximum displacement of the elements from their
equilibrium positions as the wave passes through
them. It is depicted in Fig. 15.6 (a). Since a is a
magnitude, it is a positive quantity, even if the
displacement is negative.

The phase of the wave is the argument
(fex — ot + ¢) of the oscillatory term sin (kx— ot + ¢)
in Eq. (15.2). It describes the state of motion as
the wave sweeps through a string element at a
particular position x. It changes linearly with time
t. The sine function also changes with time,
oscillating between +1 and -1. Its extreme positive
value +1 corresponds to a peak of the wave moving
through the element; then the value of y at position
x is a. Its extreme negative value —1 corresponds
to avalley of the wave moving through the element,
then the value of y at position x is —a. Thus, the
sine function and the time dependent phase of a
wave correspond to the oscillation of a string
element, and the amplitude of the wave determines
the extremes of the element’s displacement. The
constant ¢is called the initial phase angle. The
value of ¢ is determined by the initial (t = 0)
displacement and velocity of the element (say,
at x=0).

It is always possible to choose origin (x= 0) and
the initial instant (¢ = 0) such that ¢= 0. There is
no loss of generality in working with Eq. (15.2)
with ¢= 0.

15.3.2 Wavelength and Angular Wave
Number

The wavelength A of a wave is the distance
(parallel to the direction of wave propagation)
between the consecutive repetitions of the
shape of the wave. It is the minimum distance
between two consecutive troughs or crests or

two consecutive points in the same phase of
wave motion. A typical wavelength is marked in
Fig.15.6(a), which is a plot of Eq. (15.2) for t =0
and ¢= 0. At this time Eq. (15.2) reduces to

ylx, 0) = asin kx (15.5)

By definition, the displacement y is same at

both ends of this wavelength, that is at x = x,
and at x= x, + A. Thus, by Eq. (15.2),

a sin kx, = asin k(x, + 1)

=asin (kx, + k1)

This condition can be satisfied only when,

kA =2nn
where n=1, 2, 3... Since 1 is defined as the least
distance between points with the same phase,
n=1 and
2

Ik (15.6)

It is called the propagation constant or the
angular wave number ; its SI unit is radian per
metre or rad m™.*

It may be noted that in Fig. 15.6, as we move
from one plot to another, the wave moves to the
right by a distance equal to % A. Thus, by the
fifth plot, it has moved to the right by a distance
equal to A.

15.3.3 Period, Angular Frequency and
Frequency

Figurel5.7 shows a graph of the displacement
y, of Eq. (15.2), versus time tat a certain position
along the string, taken to be x = 0. If you were to
monitor the string, you would see that the

JN |

f \\
N

< T >
Fig. 15.7 A graph of the displacement of the string
element at x = 0 as a _function of time, as
the sinusoidal wave of Fig. 14.6 passes
through it. The amplitude a is indicated. A

typical period T, measured from an
arbitrary time t, is also indicated.

* Here again, ‘radian’ could be dropped and the units could be written merely as m'. Thus, k represents 2n
times the number of waves (or the total phase difference) that can be accommodated per unit length, with SI

units m’.
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element of the string at that position moves up
and down in simple harmonic motion given by
Eq. (15.2) with x=0,

y (0,t) = a sin (-at)
=—asin wt

Figure 15.7 is a graph of this equation; it does
not show the shape of the wave.

The period of oscillation T of a wave is defined
as the time any string element takes to move
through one complete oscillation. A typical period
is marked on the Fig. 15.7. Applying
Eq. (15.2) on both ends of this time interval, we get

—asin af, = —asin at, + T)
= - asin (ot + o)

This can be true only if the least value of T is
2m, or if

w=2n/T (15.7)

ois called the angular frequency of the wave,
its SI unit is rad s™.

Look back at the five plots of a travelling wave
in Fig. 15.6. The time between two consecutive
plots is T/4. Thus, by the fifth plot, every string
element has made one full oscillation.

The frequency v of a wave is defined as 1/T
and is related to the angular frequency wby

1 o

V = — = —

T 2rx

It is the number of oscillations per unit time

made by a string element as the wave passes
through it. It is usually measured in hertz.

In the discussion above, reference has always
been made to a wave travelling along a string or
a transverse wave. In a longitudinal wave, the
displacement of an element of the medium is
parallel to the direction of propagation of the
wave. In Eq. (15.2), the displacement function
for a longitudinal wave is written as,

s(x, t) = asin (kx— ot + ¢)

(15.8)

(15.9)

where s(x, t) is the displacement of an element
of the medium in the direction of propagation
of the wave at position xand time t. In Eq. (15.9),
a is the displacement amplitude; other
quantities have the same meaning as in case
of a transverse wave except that the
displacement function y (x, t) is to be replaced
by the function s (x, t).

P Example 15.2 A wave travelling along a
string is described by,

ylx, t) = 0.005 sin (80.0 x— 3.0 1),

in which the numerical constants are in
SI units (0.005 m, 80.0 rad m™, and
3.0 rad s™'). Calculate (a) the amplitude,
(b) the wavelength, and (c) the period and
frequency of the wave. Also, calculate the
displacement y of the wave at a distance
x=30.0 cm and time t =20 s ?

Answer On comparing this displacement
equation with Eq. (15.2),

y (x, t) = asin (kx- at),

we find

(a) the amplitude of the wave is 0.005 m = 5 mm.

(b) the angular wave number k and angular
frequency ware

k=80.0 m!and w=3.0 s

We then relate the wavelength A to k through
Eq. (15.6),
A=2n/k

B 2r
80.0 m™!
= 7.85cm

(c) Now we relate T to wby the relation
T=2n/w

B 2w
3.0s™
=2.09s

and frequency, v =1/T=0.48 Hz

The displacement y at x = 30.0 cm and
time t = 20 s is given by

y =(0.005 m) sin (80.0 x 0.3 - 3.0 x 20)

= (0.005 m) sin (-36 + 12m)
= (0.005 m) sin (1.699)
= (0.005 m) sin (97° ~ 5 mm <

15.4 THE SPEED OF A TRAVELLING WAVE

Let us monitor the propagation of a travelling
wave represented by Eq. (15.2) along a string.
The wave is travelling in the positive direction
of x. We find that an element of string at a
particular position x moves up and down as a
function of time but the waveform advances to
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the right. The displacement of various elements
of the string at two different instants of time t
differing by a small time interval Atis depicted
in Fig. 15.8 (the phase angle ¢ has been taken
to be zero). It is observed that during this
interval of time the entire wave pattern moves
by a distance Ax in the positive direction of x.
Thus the wave is travelling to the right, in the
positive direction of x. The ratio Ax/Atis the wave
speed v.

y AX

A

A Y

SN/

/ WWave att=At

Waveatt=0

Fig. 15.8 The plots of Eq.(15.2) at two instants of
time differing by an interval At, att = 0
and then at t = At. As the wave moves to
the right at velocity v, the entire curve shifts
a distance Ax during At. The point A rides
the waveform but the string element moves
only up and down.

As the wave moves (see Fig. 15.8), each point
of the moving waveform represents a particular
phase of the wave and retains its displacement
y. It may be noted that the points on the string
do not retain their displacement, but the points
on the waveform do. Let us consider a point like
A marked on a peak of the waveform. If a point
like A on the waveform retains its
displacement as it moves, it follows from
Eq. (15.2) that this is possible only when the
argument is constant. It, therefore, follows that

kx — ot = constant (15.10)

Note that in the argument both x and t are
changing; therefore, to keep the argument
constant, if t increases, x must also increase.
This is possible only when the wave is moving
in the positive direction of x.

To find the wave speed v, let us differentiate
Eq. (15.10) with respect to time ;

dx

or [l 0
dt

or > (15.11)
at  k

Making use of Egs. (15.6)-(15.8), we can write,

v=2- A Av
KT (15.12)
Equation (15.11) is a general relation valid
for all progressive waves. It merely states that
the wave moves a distance of one wavelength in
one period of oscillation. The speed of a wave is
related to its wavelength and frequency by the
Eq. (15.12), but it is determined by the
properties of the medium. If a wave is to travel
in a medium like air, water, steel, or a stretched
string, it must cause the particles of that
medium to oscillate as it passes through it. For
this to happen, the medium must possess mass
and elasticity. Therefore the linear mass density
(or mass per unit length, in case of linear
systems like a stretched string) and the elastic
properties determine how fast the wave can
travel in the medium. Conversely, it should be
possible to calculate the speed of the wave
through the medium in terms of these
properties. In subsequent sub-sections of this
chapter, we will obtain specific expressions for
the speed of mechanical waves in some media.

15.4.1 Speed of a Transverse Wave on

Stretched String

The speed of transverse waves on a string is
determined by two factors, (i) the linear mass
density or mass per unit length, p, and (ii) the
tension T. The mass is required so that there is
kinetic energy and without tension no
disturbance can be propagated in the string.
The exact derivation of the relationship between
the speed of wave in a stretched string and the
two parameters mentioned above is outside the
scope of this book. However, we take recourse to
a simpler procedure. In dimensional analysis,
we have already learnt (Chapter 2) how to get a
relationship between different quantities which
are interrelated. Such a relation is, however,
uncertain to the extent of a constant factor.
The linear mass density, u, of a string is the
mass m of the string divided by its length L
Therefore its dimension is [ML™!]. The tension T
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has the dimension of force — namely, [M LT 2].
Our goal is to combine pand Tin such a way as to
generate v [dimension (L T™ D]. If we examine the
dimensions of these quantities, it can be seen
that the ratio T/u has the dimension

[MLT‘Z]

e

Therefore, if v depends only on T and u , the
relation between them must be

v=c |L (15.13)
7

Here C is a dimensionless constant that
cannot be determined by dimensional analysis.
By adopting a more rigorous procedure it can
be shown that the constant Cis indeed equal to
unity. The speed of transverse waves on a

stretched string is, therefore, given by

v=|T (15.14)
u

Equation (15.14) tells us :

The speed of a wave along a stretched ideal
string depends only on the tension and the
linear mass density of the string and does
not depend on the frequency of the wave.

The frequency of the wave is determined by
the source that generates the wave. The
wavelength is then fixed by Eq. (15.12) in the
form,

1=2
> (15.15)

Example 15.3 A steel wire 0.72 m long has
amass of 5.0 X107 kg. If the wire is under
a tension of 60 N, what is the speed of
transverse waves on the wire ?

Answer Mass per unit length of the wire,

_ 5.0x103 kg
- 0.72m

=6.9 x10° kg m™!

Tension, T=60 N
The speed of wave on the wire is given by

T 60N

v=|—= |/l G= 93 m S_l
H J 6.9x10 °kgm™ <
15.4.2 Speed of a Longitudinal Wave Speed
of Sound

In a longitudinal wave the constituents of the
medium oscillate forward and backward in the
direction of propagation of the wave. We have
already seen that the sound waves travel in the
form of compressions and rarefactions of small

Propagation of a pulse on a rope

&

A\

velocity. Compare it with that obtained from Eq. (15.14).

This is also what happens with a thin metallic string of a musical instrument. The major difference is
that the velocity on a string is fairly high because of low mass per unit length, as compared to that on a
thick rope. The low velocity on a rope allows us to watch the motion and make measurements beautifully.

You can easily see the motion of a pulse on a rope. You can also see
its reflection from a rigid boundary and measure its velocity of travel.
You will need a rope of diameter 1 to 3 cm, two hooks and some
weights. You can perform this experiment in your classroom or
laboratory.

Take a long rope or thick string of diameter 1 to 3 cm, and tie it to
hooks on opposite walls in a hall or laboratory. Let one end pass on
a hook and hang some weight (about 1 to 5 kg) to it. The walls may
be about 3 to 5 m apart.

Take a stick or a rod and strike the rope hard at a point near one
end. This creates a pulse on the rope which now travels on it. You
can see it reaching the end and reflecting back from it. You can
check the phase relation between the incident pulse and reflected
pulse. You can easily watch two or three reflections before the pulse
dies out. You can take a stopwatch and find the time for the pulse
to travel the distance between the walls, and thus measure its
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volume elements of air. The property that
determines the extent to which the volume of
an element of a medium changes when the
pressure on it changes, is the bulk modulus B,
defined (see Chapter 9) as,

AP
B=—m (15.16)

Here AV/Vis the fractional change in volume
produced by a change in pressure AP. The SI
unit for pressure is N m? or pascal (Pa). Now
since the longitudinal waves in a medium travel
in the form of compressions and rarefactions or
changes in density, the inertial property of the
medium, which could be involved in the process,
is the density p. The dimension of density is [ML™®].
Thus, the dimension of the ratio B/p is,

[M L' T’Z] .

e md LI
e

Therefore, on the basis of dimensional analysis

the most appropriate expression for the speed
of longitudinal waves in a medium is

(15.17)

v=c |B
p

(15.18)

where C is a dimensionless constant and can
be shown to be unity. Thus the speed of
longitudinal waves in a medium is given by,

B
D = P

P

The speed of propagation of a longitudinal
wave in a fluid therefore depends only on the
bulk modulus and the density of the medium.

When a solid bar is struck a blow at one end,
the situation is somewhat different from that of
a fluid confined in a tube or cylinder of constant
cross section. For this case, the relevant
modulus of elasticity is the Young’s modulus,
since the sideway expansion of the bar is
negligible and only longitudinal strain needs to
be considered. It can be shown that the speed
of a longitudinal wave in the bar is given by,

(15.19)

v= ¥ (15.20)
I3}

where Yis the Young’s modulus of the material
of the bar.

Table 15.1 gives the speed of sound in various
media.

Table 15.1 Speed of Sound in some Media

Gases
Air (0°C) 331
Air (20°C) 343
Helium 965
Hydrogen 1284
Liquids
Water (0 °C) 1402
Water (20 °C) 1482
Seawater 1522
Solids
Aluminium 6420
Copper 3560
Steel 5941
Granite 6000
Vulcanised
Rubber 54

It may be noted that although the densities
of liquids and solids are much higher than those
of the gases, the speed of sound in them is
higher. It is because liquids and solids are less
compressible than gases, i.e. have much greater
bulk modulus.

In the case of an ideal gas, the relation
between pressure P and volume V is given by
(see Chapter 11)

PV = Nk, T (15.21)

where N is the number of molecules in volume
V, kB is the Boltzmann constant and T the
temperature of the gas (in Kelvin). Therefore, for
an isothermal change it follows from Eq.(15.21)
that

VAP + PAV =0

AP

or __—° __p
AV/V

Hence, substituting in Eq. (15.16), we have
B=P

Therefore, from Eq. (15.19) the speed of a
longitudinal wave in an ideal gas is given by,

v= [P (15.22)
Q
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This relation was first given by Newton and
is known as Newton's formula. v = ’ yP (15.24)
P

Example 15.4 Estimate the speed of
sound in air at standard temperature and
pressure. The mass of 1 mole of air is
29.0 x103 kg.

Answer We know that 1 mole of any gas

occupies 22.4 litres at STP. Therefore, density

of air at STP is :

p, = (mass of one mole of air)/ (volume of one
mole of air at STP)

29.0 103 kg
22.4 103 m®
= 1.29 kg m™

According to Newton’s formula for the speed
of sound in a medium, we get for the speed of
sound in air at STP,

_{I.OIXIOSNm'Z

1/2
1.29 kg o } =280ms! (15.23)

<

The result shown in Eq.(15.23) is about 15%
smaller as compared to the experimental value
of 331 m s as given in Table 15.1. Where
did we go wrong ? If we examine the basic
assumption made by Newton that the pressure
variations in a medium during propagation of
sound are isothermal, we find that this is not
correct. It was pointed out by Laplace that the
pressure variations in the propagation of sound
waves are so fast that there is little time for the
heat flow to maintain constant temperature.
These variations, therefore, are adiabatic and
not isothermal. For adiabatic processes the ideal
gas satisfies the relation,

PV7 = constant

ie. APVY) =0
or Py V' TAV+ VI AP=0

Thus for an ideal gas the adiabatic bulk
modulus is given by,

AP
B =__— _

ad AV/V
Y P

where y is the ratio of two specific heats,
C,/C,. The speed of sound is, therefore, given by,

This modification of Newton’s formula is referred
to as the Laplace correction. For air
y =7/5. Now using Eq. (15.24) to estimate the speed
of sound in air at STP, we get a value 331.3 m s,
which agrees with the measured speed.

15.5 THE PRINCIPLE OF SUPERPOSITION OF
WAVES

Let us consider that two waves are travelling
simultaneously along the same stretched string
in opposite directions. The sequence of pictures
shown in Fig. 15.9 depicts the state of
displacement of various elements of the string
at different time instant. Each picture depicts
the resultant waveform in the string at a given
instant of time. It is observed that the net
displacement of any element of the string at
a given time is the algebraic sum of the
displacements due to each wave. This way of

—
/\ \/— (@)
/\_’ (b)

4—\./

(d)

Fig. 15.9 A sequence of pictures depicting two pulses
travelling in opposite directions along a
stretched string. They meet and pass
through each other and move on
independently as shown by the sequence
of time snapshots (a) through (d). The total
disturbance is the algebraic sum of the
displacements due to each pulse. When the
two disturbances overlap they give a
complicated pattern as shown in (c). In
region (d) they have passed each other and
proceed unchanged.
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addition of individual waveforms to determine
the net waveform is called the principle of
superposition. To put this rule in a
mathematical form, let y, (x, t) and y,(x, t) be the
displacements that any element of the string
would experience if each wave travelled alone.
The displacement y (x,t) of an element of the
string when the waves overlap is then given
by,

ybe )=y lxt)+ y,lx 0 (15.25)

The principle of superposition can also be
expressed by stating that overlapping waves
algebraically add to produce a resultant wave
(or a net wave). The principle implies that the
overlapping waves do not, in any way, alter the
travel of each other.

If we have two or more waves moving in the
medium the resultant waveform is the sum of
wave functions of individual waves. That is, if
the wave functions of the moving waves are

Y, =f, -0,
Yy, = J,(x-v1),
y, =1, x-vt)

then the wave function describing the
disturbance in the medium is

y =fix-vd+ flx—vh+ ...+ f(x—v)

n
=3 fi (x—t)
i=1
As illustrative examples of this principle we
shall study the phenomena of interference and
reflection of waves.
Let a wave travelling along a stretched string
be given by,

(15.26)

y,(x, t) = asin (kx - ) (15.27)
and another wave, shifted from the first by a phase ¢
y,lx, ) = asin (kx—at + ¢) (15.28)

Both the waves have the same angular
frequency, same angular wave number Ik
(same wavelength) and the same amplitude a.
They travel in the positive direction of x-axis,
with the same speed. Their phases at a given
distance and time differ by a constant angle
¢. These waves are said to be out of phase by ¢
or have a phase difference ¢.

Now, applying the superposition principle,
the resultant wave is the algebraic sum of the
two constituent waves and has displacement

Yy (x t) = asin (kx - at) + asin (kx - at + ¢)
(15.29)

We now use the trigonometric relation

sin o+ sin f=2 sin%(OHﬂ) COS%(G—ﬂ) (15.30)

Applying this relation to Eq. (15.29) we have

Yy (x t) =[2acos %qﬁ ] sin (kx - ot + %(/5 )(15.31)

Equation (15.31) shows that the resultant wave
is also a sinusoidal wave, travelling in the
positive direction of x-axis.

The resultant wave differs from the
constituent waves in two respects: (1) its phase
angle is (/2)pand (2) its amplitude is the quantity
in brackets in Eq. (15.31) viz.,

A(@ = 2acos (¥)¢ (15.32)

If ¢ =0, i.e. the two waves are in phase,
Eq. (15.31) reduces to

A(0) = 2asin (kx - at) (15.33)

The amplitude of the resultant wave is 2a, which
is the largest possible value of A(¢).

If ¢ = &, the two waves are completely out of
phase, the amplitude of the resultant wave
given by Eq. (15.32) reduces to zero. We then
have for all x and ¢,

y (xt) =0 (15.34)

These cases are shown in Fig. 15.10.

15.6 REFLECTION OF WAVES

In previous sections we have discussed wave
propagation in unbounded media. What
happens when a pulse or a travelling wave
encounters a rigid boundary ? It is a common
experience that under such a situation the
pulse or the wave gets reflected. An everyday
example of the reflection of sound waves from
arigid boundary is the phenomenon of echo.
If the boundary is not completely rigid or is
an interface between two different elastic
media, the effect of boundary conditions on
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Fig. 15.10 Two identical sinusoidal waves, y,(x, t)
and y,(x, t), travel along a stretched string
in the positive direction of x-axis. They give
rise to a resultant wave y (x, t). The phase
difference between the two waves is (a) O
and (b) m or 180°. The corresponding
resultant waves are shown in (c) and (d).

an incident pulse or a wave is somewhat
complicated. A part of the wave is reflected
and a part is transmitted into
the second medium. If a wave

-—
is incident obliquely on the

in both these strings, the pulse, on reaching
the left end, gets reflected; the state of
disturbance in the string at various times is
shown in Fig. 15.11.

In Fig. 15.11(a), the string is fixed to the wall
at its left end. When the pulse arrives at that
end, it exerts an upward force on the wall. By
Newton’s third law, the wall exerts an opposite
force of equal magnitude on the string. This
second force generates a pulse at the support
(the wall), which travels back along the string
in the direction opposite to that of the incident
pulse. In a reflection of this kind, there must be
no displacement at the support as the string is
fixed there. The reflected and incident pulses
must have opposite signs, so as to cancel each
other at that point. Thus, in case of a travelling
wave, the reflection at a rigid boundary will take
place with a phase reversal or with a phase
difference of wor 180°.

In Fig. 15.11(b), the string is fastened to a
ring, which slides without friction on a rod. In
this case, when the pulse arrives at the left end,
the ring moves up the rod. As the ring moves, it
pulls on the string, stretching the string and
producing a reflected pulse with the same sign
and amplitude as the incident pulse. Thus, in
such a reflection, the incident and reflected
pulses reinforce each other, creating the

ANRARY

boundary between two
different media the
transmitted wave is called the

refracted wave. The incident
and refracted waves obey

Snell’s law of refraction, and
the incident and reflected
waves obey the usual laws of

ANLRNRANRAY O ANRRARRRR R AVRRRRAAY

reflection.
To illustrate the reflection of

waves at a boundary, we
consider two situations. First,
a string is fixed to a rigid wall

AN

ANRRRY

at its left end, as shown in Fig.
15.11(a). Second, the left end
of the string is tied to a ring,
which slides up and down
without any friction on a rod,
as shown in Fig. 15.11(b). A
pulse is allowed to propagate

—

(a)

(b)

Fig. 15.11 (a) A pulse incident from the right is reflected at the left end of
the string, which is tied to a wall. Note that the reflected
pulse is inverted from the incident pulse. (b) Here the left end
is tied to a ring that can slide up and down without friction on
the rod. Now the reflected pulse is not inverted by reflection.
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maximum displacement at the end of the string:
the maximum displacement of the ring is twice
the amplitude of either of the pulses. Thus, the
reflection is without any additional phase shift.
In case of a travelling wave the reflection at an
open boundary, such as the open end of an
organ pipe, the reflection takes place without
any phase change.

We can thus, summarise the
reflection of waves at aboundary or interface
between two media as follows:

A travelling wave, at a rigid boundary or a
closed end, is reflected with a phase reversal
but the reflection at an open boundary takes
place without any phase change.

To express the above statement
mathematically, let the incident wave be
represented by

y/lx, t) = asin (kx - at),

then, for reflection at a rigid boundary the
reflected wave is represented by,

y(x, t) = asin (kx + ot + 7).

= — asin (kx + at) (15.35)

For reflection at an open boundary, the
reflected wave is represented by

y, (x, ) = asin (lex + ax). (15.36)

15.6.1 Standing Waves and Normal Modes

In the previous section we have considered a
system which is bounded at one end. Let us now
consider a system which is bounded at both the
ends such as a stretched string fixed at the ends
or an air column of finite length. In such a
system suppose that we send a continuous
sinusoidal wave of a certain frequency, say,
toward the right. When the wave reaches the
right end, it gets reflected and begins to travel
back. The left-going wave then overlaps the
wave, travelling to the right. When the left-going
wave reaches the left end, it gets reflected again
and the newly reflected wave begins to travel to
the right, overlapping the left-going wave. This
process will continue and, therefore, very soon
we have many overlapping waves, which
interfere with one another. In such a system, at
any point x and at any time ¢, there are always
two waves, one moving to the left and another
to the right. We, therefore, have

(wave travelling
in the positive
direction of x-axis)

y,(x, t) = asin (lkx — )

and y,(x, t) = asin (kx + at) (wave travelling
in the negative
direction of
x-axis).

The principle of superposition gives, for the

combined wave

Yyl t)=y,lxt) +y,lxt)
= a sin (kx - wt) + a sin (kx + wt)
(15.37)

The wave represented by Eq. (15.37) does
not describe a travelling wave, as the waveform
or the disturbance does not move to either
side. Here, the quantity 2a sin kx within the
brackets is the amplitude of oscillation of the
element of the string located at the position x.
In a travelling wave, in contrast, the amplitude
of the wave is the same for all elements.
Equation (15.37), therefore, represents a
standing wave, a wave in which the waveform
does not move. The formation of such waves
is illustrated in Fig. 15.12.

It is seen that the points of maximum or
minimum amplitude stay at one position.

The amplitude is zero for values of kx that
give sin kx = 0 . Those values are given by

kx=nm forn=0,1,2,3, ...

Substituting k = 27/ in this equation, we get

= (2a sin kx) cos wt

(15.38)

The positions of zero amplitude are called

x=n% ,forn=0,1, 2, 3, ...

nodes. Note that a distance of % or half a

wavelength separates two consecutive nodes.

The amplitude has a maximum value of 2a,
which occurs for the values of kx that give
|sin kx| = 1. Those values are

kx=(n+¥w) rforn=0,1, 2, 3, ...
Substituting k =27/ in this equation, we get

x=(n+ l/z)gformo, 1.2.3. ... (15.39)

as the positions of maximum amplitude. These
are called the antinodes. The antinodes are
separated by A/2 and are located half way
between pairs of nodes.

For a stretched string of length L, fixed at both
ends, the two ends of the string have to be nodes.
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Fig. 15.12 The formation of a standing wave in a stretched string. Two sinusoidal waves of same amplitude
travel along the string in opposite directions. The set of pictures represent the state of displacements
at four different times. The displacement at positions marked as N is zero at all times. These positions

are called nodes.

If one of the ends is chosen as position
x = 0, then the other end is x = L. In order that
this end is a node; the length L must satisfy the
condition

L=n%,forn=1,2, 3, ... (15.40)

This condition shows that standing waves on a
string of length L have restricted wavelength
given by

_2L

n

The frequencies corresponding to these
wavelengths follow from Eq. (15.12) as

A , forn=1,2,3, ... etc. (15.41)

v=n_"_ for n=1,2,3, ... etc. (15.42)

2L

where v is the speed of travelling waves on the
string. The set of frequencies given by Eq. (15.42)

are called the natural frequencies or modes of

oscillation of the system. This equation tells us

that the natural frequencies of a string are

integral multiples of the lowest frequency
v

2L°
oscillation mode with that lowest frequency is
called the fundamental mode or the first
harmonic. The second harmonic is the
oscillation mode with n = 2. The third harmonic
corresponds to n= 3 and so on. The frequencies
associated with these modes are often labelled
as v,, v,, v, and so on. The collection of all
possible modes is called the harmonic series
and nis called the harmonic number.

Some of the harmonics of a stretched string
fixed at both the ends are shown in Fig. 15.13.
According to the principle of superposition, a
stretched string tied at both ends can vibrate
simultaneously in more than one modes. Which
mode is strongly excited depends on where the

vV = which corresponds to n = 1. The
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string is plucked or bowed. Musical
instruments like sitar and violin
are designed on this principle.

We now study the modes of
vibration of a system closed at one
end, with the other end being free.
Air columns such as glass tubes
partially filled with water provide
examples of such systems. In these,
the length of the air column can be
adjusted by changing the water
level in the tube. In such systems,
the end of the air column in touch
with the water suffers no
displacement as the reflected and
incident waves are exactly out of
phase. For this reason the pressure
changes here are the largest, since
when the compressional part is
reflected the pressure increase is
doubled, and when the rarefaction
is reflected the decrease in
pressure is doubled. On the other
hand, at the open end, there is
maximum displacement and
minimum pressure change. The
two waves travelling in opposite

directions are in phase here, so A
there are no pressure changes.
Now if the length of the air column X N

is L, then the open end, x=L, is an
antinode and therefore, it follows
from Eq. (15.39) that

A

A
(a)
Fundamental
A or first harmonic
A
N second harmonic
A
A A
N N ird harmonic
A A
A A A A
K > S > ,,9
ourth harmonic
N N N3
A A A
f'fthh(e) i
ANANANAN ifth harmonic
A A A A
ixth éf) i
N X N iy N A N Six armonic

A

Fig. 15.13 Stationary waves in a stretched string fixed at both

ends. Various modes of vibration are shown.

1
L= (n+ 5) 5,f0rn=0, 1,2,3, ...
The modes, which satisfy the condition

2L

1= =
(n+1/2)

, forn=0,1, 2, 3,... (15.43)

are sustained in such an air column. The
corresponding frequencies of various modes of
such an air column are given by,

L
2

1Y)

)2L’

v = (n+ forn=0,1, 2, 3, ...

(15.44)

Some of the normal modes in an air column
with the open end are shown in Fig. 15.14. The

fundamental frequency is L and the higher

frequencies are odd harmonics of the

v v
fundamental frequency, i.e. 3—, 5—, etc.
4L 4L

In the case of a pipe open at both ends, there
will be antinodes at both ends, and all
harmonics will be generated.

Normal modes of a circular membrane rigidly
clamped to the circumference as in a tabla are
determined by the boundary condition that no
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point on the circumference of the membrane
vibrates. Estimation of the frequencies of normal
modes of this system is more complex. This
problem involves wave propagation in two
dimensions. However, the underlying physics is
the same.

We have seen above that in a string, fixed at
both ends, standing waves are produced only
at certain frequencies as given by Eq. (15.42) or
the system resonates at these frequencies.
Similarly an air column open at one end
resonates at frequencies given by Eq. (15.44).

P Example 15.5 A pipe, 30.0 cm long, is
open at both ends. Which harmonic mode
of the pipe rasonates a 1.1 kHz source? Will
resonance with the same source be
observed if one end of the pipe is closed ?
Take the speed of sound in air as
330ms™.

Answer The first harmonic frequency is given
by
v = v _ v
17 7 2L

where Lis the length of the pipe. The frequency
of its nth harmonic is:

(open pipe)

nv

Vo= 3L

forn=1, 2, 3, ... (open pipe)

First few modes of an open pipe are shown in
Fig. 15.14.

(@) (b) ©)
Fundamental
or third fifth

first harmonic harmonic harmonic

(d) (e) ()

XXXXX

eleventh
harmonic

ninth
harmonic

seventh
harmonic

Fig. 15.14 Some of the normal modes of vibration of
an air column open at one end.

For L=30.0 cm, v=330m s,

nx 330 ms™)
Vo = 0.6 (m)

=550 ns!

Clearly, a source of frequency 1.1 kHz will
resonate at v,, i.e. the second harmonic.

Now if one end of the pipe is closed (Fig. 15.15),
it follows from Eq. (14.50) that the fundamental
frequency is

v, = /1—vl=% (pipe closed at one end)

1
and only the odd numbered harmonics are
present :
_3v B4
Vs= 40 Vs= 3 - andsoon.

For L = 30 cm and v = 330 m s, the
fundamental frequency of the pipe closed at one
end is 275 Hz and the source frequency
corresponds to its fourth harmonic. Since this
harmonic is not a possible mode, no resonance
will be observed with the source, the moment
one end is closed. <

15.7 BEATS

If we listen, a few minutes apart, two sounds of
very close frequencies, say 256 Hz and 260 Hz,
we will not be able to discriminate between
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Fundamental Second harmonic

or
first harmonic

YO.OCP0CCL

Fourth harmonic

Third harmonic

Fig. 15.15 Standing waves in an open pipe, first four
harmonics are depicted.

them. However, if both these sounds reach our
ears simultaneously, what we hear is a sound
of frequency 258 Hz, the average of the two
combining frequencies. In addition we hear a
striking variation in the intensity of sound — it
increases and decreases in slow, wavering beats
that repeat at a frequency of 4 Hz, the
difference between the frequencies of two
incoming sounds. The phenomenon of wavering
of sound intensity when two waves of nearly
same frequencies and amplitudes travelling in
the same direction, are superimposed on each
other is called beats.

Let us find out what happens when two waves
having slightly different frequencies are
superposed on each other. Let the time
dependent variations of the displacements due
to two sound waves at a particular location be

(15.45)

where ¢ > @. We have assumed, for simplicity,
that the waves have same amplitude and phase.
According to the superposition principle, the
resultant displacement is

s= s +s,=alcosqt+cos qi

( 1 2)t

= 2 a cos 3 cos

s, =acos@t and s,=a cos gt

(15.46)

If we write ¢ = M and o = M
2 2
then Eq. (15.46) can be written as

s=[2 a cos g t] cos at (15.47)

If |lo-ow,| <<o,, 0,, o, >> @, then in
Eq. (15.47) the main time dependence arises
from cosine function whose angular frequency

Musical Pillars
Temples often have

some pillars
portraying human
figures playing

musical instru-
ments, but seldom
do these pillars
themselves produce
music. At the
Nellaiappar temple
in Tamil Nadu,
gentle taps on a
cluster of pillars carved out of a single piece
of rock produce the basic notes of Indian
classical music, viz. Sa, Re, Ga, Ma, Pa, Dha,
Ni, Sa. Vibrations of these pillars depend on
elasticity of the stone used, its density and
shape.

Musical pillars are categorised into three
types: The first is called the Shruti Pillar,
as it can produce the basic notes — the
“swaras”. The second type is the Gana
Thoongal, which generates the basic tunes
that make up the “ragas”. The third variety
is the Laya Thoongal pillars that produce
“taal” (beats) when tapped. The pillars at the
Nellaiappar temple are a combination of the
Shruti and Laya types.

Archaeologists date the Nelliappar
temple to the 7th century and claim it was
built by successive rulers of the Pandyan
dynasty.

The musical pillars of Nelliappar and
several other temples in southern India like
those at Hampi (picture), Kanyakumari, and
Thiruvananthapuram are unique to the
country and have no parallel in any other
part of the world.

is @.The quantity in the brackets can be regarded
as the amplitude of this function (which is not a
constant but, has a small variation of angular
frequency @). It becomes maximum whenever
cos @ t has the value +1 or -1, which happens
twice in each repetition of cosine function. Since
@ and ) are very close, @ cannot be differentiated
easily from either of them. Thus, the result of
superposition of two waves having nearly the same
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Reflection of sound in an open
pipe
When a high
pressure pulse of
air traveling down
an open pipe
reaches the other
end, its momentum
drags the air out
into the open, where
pressure falls
rapidly to the
atmospheric
pressure. As a
result the air following after it in the tube is
pushed out. The low pressure at the end of
the tube draws air from further up the tube.
The air gets drawn towards the open end
forcing the low pressure region to move
upwards. As a result a pulse of high pressure
air travelling down the tube turns into a
pulse of low pressure air travelling up the
tube. We say a pressure wave has been
reflected at the open end with a change in
phase of 180°. Standing waves in an open
pipe organ like the flute is a result of this
phenomenon.
Compare this with what happens when
a pulse of high pressure air arrives at a
closed end: it collides and as a result pushes
the air back in the opposite direction. Here,
we say that the pressure wave is reflected,
with no change in phase.

frequencies is a wave with nearly same angular
frequency but its amplitude is not constant. Thus
the intensity of resultant sound varies with an
angular frequency @, =2 @ = @ —@. Now using
the relation,

w=2mv
the beat frequency, v, . is given by
Vet =V, =V, (15.48)

Thus we hear a waxing and waning of sound
with a frequency equal to the difference between
the frequencies of the superposing waves. The
time-displacement graphs of two waves of
frequency 11 Hz and 9 Hz is shown in Figs. 15.16(a)
and 15.16(b). The result of their ‘superposition’ is
shown in Fig. 15.16(c).
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Fig. 15.16 (a) Plot of a harmonic wave of frequency
11 Hz. (b) Plot of a harmonic wave of
Jrequency 9 Hz. (c) Superposition of (a)
and (b), showing clearly the beats in the
slow (2 Hz) of the total disturbance.

Musicians use the beat phenomenon in
tuning their instruments. If an instrument is
sounded against a standard frequency and
tuned until the beat disappears, then the
instrument is in tune with that standard.

‘ Example 15.6 Two sitar strings A and B
playing the note ‘Dha’ are slightly out of
tune and produce beats of frequency 5 Hz.
The tension of the string B is slightly
increased and the beat frequency is found
to decrease to 3 Hz. What is the original
frequency of B if the frequency of A is
427 Hz ?

Answer Increase in the tension of a string
increases its frequency. If the original frequency
of B (v,) were greater than that of A (v, ), further
increase in v, should have resulted in an
increase in the beat frequency. But the beat
frequency is found to decrease. This shows that
v,<V,. Sincev,-v_,=5Hz, and v, = 427 Hz, we
get v, =422 Hz. <

15.8 DOPPLER EFFECT

It is an everyday experience that the pitch (or
frequency) of the whistle of a fast moving train
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decreases as it recedes away. When we
approach a stationary source of sound with high
speed, the pitch of the sound heard appears to
be higher than that of the source. As the
observer recedes away from the source, the
observed pitch (or frequency) becomes lower
than that of the source. This motion-related
frequency change is called Doppler effect. The
Austrian physicist Johann Christian Doppler
first proposed the effect in 1842. Buys Ballot in
Holland tested it experimentally in 1845.
Doppler effect is a wave phenomenon, it holds
not only for sound waves but also for
electromagnetic waves. However, here we shall
consider only sound waves.

We shall analyse changes in frequency under
three different situations: (1) observer is
stationary but the source is moving, (2) observer
is moving but the source is stationary, and (3)
both the observer and the source are moving.
The situations (1) and (2) differ from each other
because of the absence or presence of relative
motion between the observer and the medium.
Most waves require a medium for their propagation;
however, electromagnetic waves do not require
any medium for propagation. If there is no
medium present, the Doppler shifts are same
irrespective of whether the source moves or the
observer moves, since there is no way of
distinction between the two situations.

15.8.1 Source Moving ; Observer Stationary

Let us choose the convention to take the
direction from the observer to the source as
the positive direction of velocity. Consider a
source S moving with velocity v, and an observer
who is stationary in a frame in which the
medium is also at rest. Let the speed of a wave
of angular frequency w and period T, both
measured by an observer at rest with respect to
the medium, be v. We assume that the observer
has a detector that counts every time a wave
crest reaches it. As shown in
Fig. 15.17, at time t =0 the source is at point S;_
located at a distance L from the observer, and
emits a crest. This reaches the observer at time
t; = L/v. At time t = T, the source has moved a
distance v T, and is at point S,, located at a
distance (L + v T,) from the observer. At S,, the
source emits a second crest. This reaches the
observer at

(L + USTO )
1)

t, = T, +
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Fig. 15.17 A source moving with velocity v, emits a
wave crest at the point S,. It emits the
next wave crest at S, after moving a
distance v T, .

At time n T,, the source emits its (n+1)™ crest
and this reaches the observer at time
L n /[T,
v
Hence, in a time interval
L nuT L
nTO —0 i
v v
the observer’s detector counts n crests and the
observer records the period of the wave as T
given by

t n T,

n+l

L nvT
T nT, _~  "7sT0 £/n

15} 15}
_ TO(1+U—S)
5]

Equation (15.49) may be rewritten in terms
of the frequency v, that would be measured if
the source and observer were stationary, and
the frequency v observed when the source is
moving, as

(15.49)

-1

v
v =Y 1+?S (15.50)

If v, is small compared with the wave speed v,
taking binomial expansion to terms in first order
in v,/v and neglecting higher power, Eq. (15.50)
may be approximated, giving

D

For a source approaching the observer, we
replace v, by — v to get

(15.51)
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v =V |1+ Y
v
The observer thus measures a lower frequency
when the source recedes from him than he does
when it is at rest. He measures a higher
frequency when the source approaches him.

15.8.2

(15.52)

Observer Source

Stationary

Moving;

Now to derive the Doppler shift when the
observer is moving with velocity v, towards the
source and the source is at rest, we have to
proceed in a different manner. We work in the
reference frame of the moving observer. In this
reference frame the source and medium are
approaching at speed v, and the speed with
which the wave approaches is v, + v. Following
a similar procedure as in the previous case, we
find that the time interval between the arrival
of the first and the (n+1) th crests is

nv, T,

t.,.—-t = nT

n+

Uy +U

The observer thus, measures the period of the
wave to be

v
Vg +U

giving
(15.53)

vV = 0(1+%°J

v
If ?O is small, the Doppler shift is almost same

whether it is the observer or the source moving
since Eq. (15.53) and the approximate relation
Eq. (15.51 ) are the same.

15.8.3 Both Source and Observer Moving

We will now derive a general expression for
Doppler shift when both the source and the
observer are moving. As before, let us take the
direction from the observer to the source as the
positive direction. Let the source and the
observer be moving with velocities v, and v,
respectively as shown in Fig.15.18. Suppose at
time t = O, the observer is at O, and the source
is at S;, O, being to the left of S,. The source
emits a wave of velocity v, of frequency v and

Application of Doppler effect

The change in frequency caused by a moving object
due to Doppler effect is used to measure their
velocities in diverse areas such as military,
medical science, astrophysics, etc. It is also used
by police to check over-speeding of vehicles.

A sound wave or electromagnetic wave of
known frequency is sent towards a moving object.
Some part of the wave is reflected from the object
and its frequency is detected by the monitoring
station. This change in frequency is called Doppler
shift.

It is used at airports to guide aircraft, and in
the military to detect enemy aircraft.
Astrophysicists use it to measure the velocities
of stars.

Doctors use it to study heart beats and blood
flow in different part of the body. Here they use
ulltrasonic waves, and in common practice, it is
called sonography. Ultrasonic waves enter the
body of the person, some of them are reflected
back, and give information about motion of blood
and pulsation of heart valves, as well as pulsation
of the heart of the foetus. In the case of heart,
the picture generated is called echocardiogram.

period T, all measured by an observer at rest
with respect to the medium. Let L be the
distance between O, and S; at t = O, when the
source emits the first crest. Now, since the
observer is moving, the velocity of the wave
relative to the observer is v+ v,. Therfore the first
crest reaches the observer at time t, = L/(v+v,).
At time t = T, both the observer and the source
have moved to their new positions O, and S,
respectively. The new distance between the
observer and the source, O, S,, would be L+(v.—
vg) Tpl. At Sy, the source emits a second crest.
This reaches the observer at time.

to=T,+ [L+ (vs—v,)T,)] /(v +v,)

At time nT, the source emits its (n+1) th crest
and this reaches the observer at time

tpo =nT,+ [L+ n(vg-v)T,)] /(v+v,)
Hence, in a time interval t,,; -t;, i.e.,
nT,+[L+n(vs—v)T)l /(v+v,)-L/(v+v,),

the observer counts n crests and the observer
records the period of the wave as equal to T'given by



PHYSICS

U, - LD+ UV
T = T,|1+22"% |-, s
0[ T UOJ O[U+U0J (15.54)

The frequency v observed by the observer is
given by

[v +0, J
V=V,
v+,

Consider a passenger sitting in a train moving
on a straight track. Suppose she hears a whistle
sounded by the driver of the train. What
frequency will she measure or hear? Here both
the observer and the source are moving with
the same velocity, so there will be no shift in
frequency and the passanger will note the
natural frequency. But an observer outside who
is stationary with respect to the track will note
a higher frequency if the train is approaching
him and a lower frequency when it recedes from
him.

Note that we have defined the direction from
the observer to the source as the positive

(15.55)
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Fig. 15.18 The observer O and the source S, both
moving respectively with velocities v, and
v, . They are at position O, and S, at time
t =0, when the source emits the first crest
of a sound, whose velocity is v with
respect to the medium. After one period,
t = T,, they have moved to O, and S,,
respectively through distances v, T, and
v, Ty, when the source emits the next
crest.

direction. Therefore, if the observer is moving
towards the source, v, has a positive (numerical)

value whereas if O is moving away from S, v,
has a negative value. On the other hand, if S is
moving away from O, v, has a positive value
whereas if it is moving towards O, v, has a
negative value. The sound emitted by the source
travels in all directions. It is that part of sound
coming towards the observer which the observer
receives and detects. Therefore the relative
velocity of sound with respect to the observer is
v+y, in all cases.

S Example 15.7 A rocket is moving at a
speed of 200 m s towards a stationary
target. While moving, it emits a wave of
frequency 1000 Hz. Some of the sound
reaching the target gets reflected back to the
rocket as an echo. Calculate (1) the
frequency of the sound as detected by the
target and (2) the frequency of the echo as
detected by the rocket.

Answer (1) The observer is at rest and the
source is moving with a speed of 200 m s!. Since
this is comparable with the velocity of sound,
330 m s!, we must use Eq. (15.50) and not the
approximate Eq. (15.51). Since the source is
approaching a stationary target, v, = 0, and v,
must be replaced by —v_. Thus, we have

v —1
v= vo(l _Ts]

v=1000Hz x [1-200m s!/330 m s!]!

~ 2540 Hz

(2) The target is now the source (because it is
the source of echo) and the rocket’s detector is
now the detector or observer (because it detects
echo). Thus, v, = 0 and v, has a positive value.
The frequency of the sound emitted by the source
(the target) is v, the frequency intercepted by
the target and not v . Therefore, the frequency
as registered by the rocket is

v+Uv
V =V 0
v
-1 -1
9540 Hz x OOms +3301ms
330 ms~
~4080 Hz |



WAVES

385

10.

11.

SUMMARY

Mechanical waves can exist in material media and are governed by Newton’s Laws.

Transverse waves are waves in which the particles of the medium oscillate perpendicular
to the direction of wave propagation.

Longitudinal waves are waves in which the particles of the medium oscillate along the
direction of wave propagation.

Progressive wave is a wave that moves from one point of medium to another.

The displacement in a sinusoidal wave propagating in the positive x direction is given
by
ylx t) =asin(kx— ot + ¢

where a is the amplitude of the wave, k is the angular wave number, wis the angular
frequency, (kx— ot + ¢) is the phase, and ¢ is the phase constant or phase angle.

Wavelength A of a progressive wave is the distance between two consecutive points of
the same phase at a given time. In a stationary wave, it is twice the distance between
two consecutive nodes or anti nodes.

Period T of oscillation of a wave is defined as the time any element of the medium
takes to move through one complete oscillation. It is related to the angular frequency
through the relation

2
’1":_1.c
w

Frequency v of a wave is defined as 1/T and is related to angular frequency by

Speed of a progressive wave is given by p T T
T

The speed of a transverse wave on a stretched string is set by the properties of the

string. The speed on a string with tension T and linear mass density u is

Y

Sound waves are longitudinal mechanical waves that can travel through solids, liquids,
or gases. The speed v of sound wave in a fluid having bulkc modulus B and density p is

‘/E
D= —
Yol

The speed of longitudinal waves in a metallic bar is

‘/?
v= |[—
o

For gases, since B =YP, the speed of sound is

YP
v= ’—
P
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12. When two or more waves traverse the same medium, the displacement of any element
of the medium is the algebraic sum of the displacements due to each wave. This is
known as the principle of superposition of waves

yzzn:fi(x — ut)

13. Two sinusoidal waves on the same string exhibit interference, adding or cancelling
according to the principle of superposition. If the two are travelling in the same
direction and have the same amplitude a and frequency but differ in phase by a phase
constant ¢, the result is a single wave with the same frequency w:

1 1
ylx ) = 2acos— sin kx t —
2 2

If = 0 or an integral multiple of 27, the waves are exactly in phase and the interference
is constructive; if ¢= 7, they are exactly out of phase and the interference is destructive.

14. A travelling wave, at a rigid boundary or a closed end, is reflected with a phase reversal
but the reflection at an open boundary takes place without any phase change.

For an incident wave
y,(x, 1) = asin (kx - at)
the reflected wave at a rigid boundary is
y (x t) = - asin (kx + at)
For reflection at an open boundary
y (xt) = asin (kx + af)
15. The interference of two identical waves moving in opposite directions produces standing
waves. For a string with fixed ends, the standing wave is given by
Y (x, t) = [2a sin kx] cos at
Standing waves are characterised by fixed locations of zero displacement called nodes

and fixed locations of maximum displacements called antinodes. The separation between
two consecutive nodes or antinodes is 1/2.

A stretched string of length L fixed at both the ends vibrates with frequencies given by

1 v

2 2L
The set of frequencies given by the above relation are called the normal modes of
oscillation of the system. The oscillation mode with lowest frequency is called the

fundamental mode or the first harmonic. The second harmonic is the oscillation mode
with n =2 and so on.

n=1,2,3, ...

A pipe of length L with one end closed and other end open (such as air columns)
vibrates with frequencies given by
v
1 I —_
v n % oL’ n=0,1, 2,3, ...

The set of frequencies represented by the above relation are the normal modes of
oscillation of such a system. The lowest frequency given by v/4L is the fundamental
mode or the first harmonic.

16. A string of length L fixed at both ends or an air column closed at one end and open at
the other end, vibrates with frequencies called its normal modes. Each of these
frequencies is a resonant frequency of the system.

17. Beats arise when two waves having slightly different frequencies, v, and v, and
comparable amplitudes, are superposed. The beat frequency is

Vo = V1~ Vs

beat
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18.

The Doppler effect is a change in the observed frequency of a wave when the source
and the observer O moves relative to the medium. For sound the observed frequency
v is given in terms of the source frequency v, by

v+u,
v=v | ——
°lv +v

S
here vis the speed of sound through the medium, v, is the velocity of observer relative
to the medium, and v_ is the source velocity relative to the medium. In using this
formula, velocities in the direction OS should be treated as positive and those opposite
to it should be taken to be negative.

e e e —

Wavelength Distance between two consecutive
points with the same phase.

Propagation Ie [L7] m” L 2m

constant A

Wave speed v [LT™ ms' v=vi

Beat frequency Vieas [T] s ' Difference of two close frequencies

of superposing waves.

POINTS TO PONDER

1.

A wave is not motion of matter as a whole in a medium. A wind is different from the
sound wave in air. The former involves motion of air from one place to the other. The
latter involves compressions and rarefactions of layers of air.

In a wave, energy and not the matter is transferred from one point to the other.

Energy transfer takes place because of the coupling through elastic forces between
neighbouring oscillating parts of the medium.

Transverse waves can propagate only in medium with shear modulus of elasticity,
Longitudinal waves need bulk modulus of elasticity and are therefore, possible in all
media, solids, liquids and gases.

In a harmonic progressive wave of a given frequency all particles have the same
amplitude but different phases at a given instant of time. In a stationary wave, all
particles between two nodes have the same phase at a given instant but have different
amplitudes.

Relative to an observer at rest in a medium the speed of a mechanical wave in that
medium (v) depends only on elastic and other properties (such as mass density) of
the medium. It does not depend on the velocity of the source.

For an observer moving with velocity v, relative to the medium, the speed of a wave is
obviously different from v and is given by v+ v,.
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15.1

15.2

15.3

15.4

15.5

15.6

15.7

15.8

15.9

15.10

EXERCISES

A string of mass 2.50 kg is under a tension of 200 N. The length of the stretched
string is 20.0 m. If the transverse jerk is struck at one end of the string, how long
does the disturbance take to reach the other end?

A stone dropped from the top of a tower of height 300 m high splashes into the
water of a pond near the base of the tower. When is the splash heard at the top
given that the speed of sound in air is 340 m s'? (g = 9.8 m s3)

A steel wire has a length of 12.0 m and a mass of 2.10 kg. What should be the
tension in the wire so that speed of a transverse wave on the wire equals the speed
of sound in dry air at 20°C = 343 m s™.

P
Use the formula v = = to explain why the speed of sound in air
v P

(a) isindependent of pressure,
(b) increases with temperature,
(c) increases with humidity.

You have learnt that a travelling wave in one dimension is represented by a function
y = f (x, t) where x and t must appear in the combination x —v tor x + v ¢, i.e.
y = f (x = v t). Is the converse true? Examine if the following functions for y can
possibly represent a travelling wave :

(@) (x-vt)

(b)  log [(x + v)/x]

() 1/(x+vY

A bat emits ultrasonic sound of frequency 1000 kHz in air. If the sound meets a
water surface, what is the wavelength of (a) the reflected sound, (b) the transmitted
sound? Speed of sound in air is 340 m s and in water 1486 m s™.

A hospital uses an ultrasonic scanner to locate tumours in a tissue. What is the
wavelength of sound in the tissue in which the speed of sound is 1.7 km s ? The
operating frequency of the scanner is 4.2 MHz.

A transverse harmonic wave on a string is described by
ylx, ) =3.0 sin (36 t + 0.018 x + 7/4)

where x and y are in cm and tin s. The positive direction of xis from left to right.
(a) Is this a travelling wave or a stationary wave ?
If it is travelling, what are the speed and direction of its propagation ?
(b) What are its amplitude and frequency ?
(c) What is the initial phase at the origin ?
(d) What is the least distance between two successive crests in the wave ?

For the wave described in Exercise 15.8, plot the displacement (y) versus (f) graphs
for x=0, 2 and 4 cm. What are the shapes of these graphs? In which aspects does
the oscillatory motion in travelling wave differ from one point to another: amplitude,
frequency or phase ?

For the travelling harmonic wave
ylx, 1) =2.0 cos 27 (10t- 0.0080 x + 0.35)

where xand y are in cm and tin s. Calculate the phase difference between oscillatory
motion of two points separated by a distance of

(a) 4m,
(b) 0.5m,
() A/2,

(

d 31/4
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15.11

15.12

15.13

15.14

15.15

15.16

15.17

15.18

15.19

The transverse displacement of a string (clamped at its both ends) is given by

2
ylx, t) = 0.06 sin ?X cos (120 nt)

where x and y are in m and tin s. The length of the string is 1.5 m and its mass is
3.0 x102kg.

Answer the following :

(a) Does the function represent a travelling wave or a stationary wave?

(b) Interpret the wave as a superposition of two waves travelling in opposite
directions. What is the wavelength, frequency, and speed of each wave ?

(c) Determine the tension in the string.

(i) For the wave on a string described in Exercise 15.11, do all the points on the
string oscillate with the same (a) frequency, (b) phase, (c) amplitude? Explain
your answers. (ii) What is the amplitude of a point 0.375 m away from one end?

Given below are some functions of x and t to represent the displacement (transverse
or longitudinal) of an elastic wave. State which of these represent (i) a travelling
wave, (ii) a stationary wave or (iii) none at all:

(a) y=2cos(3x sin (109

b)) y =24x - vt
(c) y=38sin (5x-0.51 + 4 cos (5x- 0.5%)

(d) y=cosxsint+ cos 2xsin 2t

A wire stretched between two rigid supports vibrates in its fundamental mode with
a frequency of 45 Hz. The mass of the wire is 3.5 x 102 kg and its linear mass density
is 4.0 x 102 kg m™. What is (a) the speed of a transverse wave on the string, and
(b) the tension in the string?

A metre-long tube open at one end, with a movable piston at the other end, shows
resonance with a fixed frequency source (a tuning fork of frequency 340 Hz) when
the tube length is 25.5 cm or 79.3 cm. Estimate the speed of sound in air at the
temperature of the experiment. The edge effects may be neglected.

A steel rod 100 cm long is clamped at its middle. The fundamental frequency of
longitudinal vibrations of the rod are given to be 2.53 kHz. What is the speed of
sound in steel?

A pipe 20 cm long is closed at one end. Which harmonic mode of the pipe is
resonantly excited by a 430 Hz source ? Will the same source be in resonance with
the pipe if both ends are open? (speed of sound in air is 340 m s™).

Two sitar strings A and B playing the note ‘Ga’ are slightly out of tune and produce
beats of frequency 6 Hz. The tension in the string A is slightly reduced and the
beat frequency is found to reduce to 3 Hz. If the original frequency of A is 324 Hz,
what is the frequency of B?

Explain why (or how):

(a) in a sound wave, a displacement node is a pressure antinode and vice versa,

(b) bats can ascertain distances, directions, nature, and sizes of the obstacles
without any “eyes”,

(¢) a violin note and sitar note may have the same frequency, yet we can
distinguish between the two notes,

(d) solids can support both longitudinal and transverse waves, but only
longitudinal waves can propagate in gases, and

(e) the shape of a pulse gets distorted during propagation in a dispersive medium.
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15.20 A train, standing at the outer signal of a railway station blows a whistle of frequency 400
Hz in still air. (i) What is the frequency of the whistle for a platform observer when the train
(a) approaches the platform with a speed of 10 m s, (b) recedes from the platform with a
speed of 10 m s7'? (ii) What is the speed of sound in each case ? The speed of sound in still
air can be taken as 340 m s'.

15.21 A train, standing in a station-yard, blows a whistle of frequency 400 Hz in still air. The wind
starts blowing in the direction from the yard to the station with at a speed of 10 m s™'. What
are the frequency, wavelength, and speed of sound for an observer standing on the station’s
platform? Is the situation exactly identical to the case when the air is still and the observer
runs towards the yard at a speed of 10 m s'? The speed of sound in still air can be taken as
340m s

Additional Exercises

15.22 A travelling harmonic wave on a string is described by
ylx, t) = 7.5 sin (0.0050x +12t + 7/ 4)

(a)what are the displacement and velocity of oscillation of a point at
x=1cm, and t =1 s? Is this velocity equal to the velocity of wave propagation?
(b)Locate the points of the string which have the same transverse displacements and velocity

asthex=1cmpointatt=2s,5sand 11 s.

15.23 A narrow sound pulse (for example, a short pip by a whistle) is sent across a medium. (a)
Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propagation? (b) If
the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of second after
every 20 s), is the frequency of the note produced by the whistle equal to 1/20 or 0.05 Hz ?

15.24 One end of a long string of linear mass density 8.0 x 10 kg m'is connected to an electrically
driven tuning fork of frequency 256 Hz. The other end passes over a pulley and is tied to a
pan containing a mass of 90 kg. The pulley end absorbs all the incoming energy so that
reflected waves at this end have negligible amplitude. At t = O, the left end (fork end) of the
string x = 0 has zero transverse displacement (y = 0) and is moving along positive y-direction.
The amplitude of the wave is 5.0 cm. Write down the transverse displacement y as function
of x and t that describes the wave on the string.

15.25 A SONAR system fixed in a submarine operates at a frequency 40.0 kHz. An enemy submarine
moves towards the SONAR with a speed of 360 km h™'. What is the frequency of sound
reflected by the submarine ? Take the speed of sound in water to be 1450 m s™.

15.26 Earthquakes generate sound waves inside the earth. Unlike a gas, the earth can experience
both transverse (S) and longitudinal (P) sound waves. Typically the speed of S wave is about
4.0 km s, and that of P wave is 8.0 km s™'. A seismograph records P and S waves from an
earthquake. The first Pwave arrives 4 min before the first S wave. Assuming the waves travel
in straight line, at what distance does the earthquake occur ?

15.27 A bat is flitting about in a cave, navigating via ultrasonic beeps. Assume that the sound
emission frequency of the bat is 40 kHz. During one fast swoop directly toward a flat wall
surface, the bat is moving at 0.03 times the speed of sound in air. What frequency does the
bat hear reflected off the wall ?



